Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-472547

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) in humans, has a broad host range, and is able to infect domestic and wild animal species. Notably, white-tailed deer (WTD, Odocoileus virginianus), the most widely distributed cervid species in the Americas, were shown to be highly susceptible to SARS-CoV-2 in challenge studies and reported natural infection rates approaching 40% in free-ranging WTD in the U.S. Thus, understanding the infection and transmission dynamics of SARS-CoV-2 in WTD is critical to prevent future zoonotic transmission to humans and for implementation of effective disease control measures. Here, we demonstrated that following intranasal inoculation with SARS-CoV-2, WTD fawns shed infectious virus up to day 5 post-inoculation (pi), with high viral loads shed in nasal and oral secretions. This resulted in efficient deer-to-deer transmission on day 3 pi. Consistent a with lack of infectious SARS-CoV-2 shedding after day 5 pi, no transmission was observed to contact animals added on days 6 and 9 pi. We have also investigated the tropism and sites of SARS-CoV-2 replication in adult WTD. Infectious virus was recovered from respiratory-, lymphoid-, and central nervous system tissues, indicating broad tissue tropism and multiple sites of virus replication. The study provides important insights on the infection and transmission dynamics of SARS-CoV-2 in WTD, a wild animal species that is highly susceptible to infection and with the potential to become a reservoir for the virus in the field. Author summaryThe high susceptibility of white-tailed deer (WTD) to SARS-CoV-2, their ability to transmit the virus to other deer, and the recent findings suggesting widespread SARS-CoV-2 infection in wild WTD populations in the U.S. underscore the need for a better understanding of the infection and transmission dynamics of SARS-CoV-2 in this potential reservoir species. Here we investigated the transmission dynamics of SARS-CoV-2 over time and defined the major sites of virus replication during the acute phase of infection. Additionally, we assessed the evolution of the virus as it replicated and transmitted between animals. The work provides important information on the infection dynamics of SARS-CoV-2 in WTD, an animal species that - if confirmed as a new reservoir of infection - may provide many opportunities for exposure and potential zoonotic transmission of the virus back to humans.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-456510

RESUMO

Susceptibility to SARS-CoV-2 and the outcome of COVID-19 have been linked to underlying health conditions and the age of affected individuals. Here we assessed the effect of age on SARS-CoV-2 infection using a ferret model. For this, young (6-month-old) and aged (18-to-39-month-old) ferrets were inoculated intranasally with various doses of SARS-CoV-2. By using infectious virus shedding in respiratory secretions and seroconversion, we estimated that the infectious dose of SARS-CoV-2 in aged animals is [~]32 plaque forming units (PFU) per animal while in young animals it was estimated to be [~]100 PFU. We showed that viral replication in the upper respiratory tract and shedding in respiratory secretions is enhanced in aged ferrets when compared to young animals. Similar to observations in humans, this was associated with higher expressions levels of two key viral entry factors - ACE2 and TMPRSS2 - in the upper respiratory tract of aged ferrets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...